LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
 B.Sc. DEGREE EXAMINATION - STATISTICS
 FIRST SEMESTER - November 2009
 ST 1503/ST 1501 - PROBABILITY AND RANDOM VARIABLES

Date \& Time: 12/11/2009 / 1:00-4:00
Dept. No. Max. : 100 Marks

SECTION - A

Answer ALL the questions

($10 \times 2=20$ marks)

1. Define mutually exclusive events with an example.
2. Write down the axiomatic definition of probability.
3. If A, B, C are any three events, write down the theoretical expression for the following events: a) Only A occurs b) A and B occurs but C does not.
4. Letters are drawn one at a time from a box containing the letters M, A, N, R, O and D. What is the probability that the letters in the order drawn spell the word RANDOM?
5. An unbiased die is thrown two independent times. What is the probability that the sum obtained is $\mathbf{8}$ given that the first throw resulted in an even number?
6. If A, B and C are mutually independent events, show that $A \boldsymbol{U} B$ and C are also independent.
7. A box contains 5 white and $\mathbf{7}$ black beads. Three beads are drawn in succession. What is the probability that all three are white, if each bead is replaced before the next one is drawn?
8. State the Law of total probability.
9. Check whether the function defined by $p(x)=(x+2) / 5$ for $x=1,2,3,4,5$ can serve as a probability distribution of a random variable.
10. Define probability generating function.

SECTION - B

Answer any FIVE questions

11. a) For any two events A and B, show that $P(B) \leq P(A)$ if $B \subset A$.
b) The probability of surviving a certain transplant operation is 0 . 55 .If a patient survives the operation, the probability that his or her body will reject the transplant within a month is 0.20 . What is the probability of surviving both of these critical stages?
12. What is a Pascal's triangle? Construct the seventh and eighth rows of Pascal's triangle and write down the expansion of $(x+y)^{7}$.
13. Four groups of children contain respectively 3 girls and 2 boys, 2 girls and 3 boys, 1 girl and 4 boys, 1 boy and 4 girls. One child is selected at random from each group. Find the probability that the four selected consist of 2 girls and 2 boys.
14. Arun and Mohan alternately cut a pack of cards and the pack is shuffled after each cut. If Arun starts and the game is continued until one cut a spade, what are their respective chances of first cutting spade?
15. Given ' n ' independent events A_{i}, $i=1,2, \ldots$, n with respective probabilities of occurrence α_{i}, find an expression for the probability of occurrence of atleast one of them.
16. State and prove Baye's theorem.
17. The pdf of the random variable Y is given by

$$
\begin{array}{r}
f(y)=k(y+1), 2<y<4 \\
0, \text { otherwise } .
\end{array}
$$

Find
a) k
b) $\mathbf{P}(\mathbf{Y}<3.2)$
c) $\mathbf{P}(|\mathrm{Y}|<3)$
d) $\mathbf{E}(\mathbf{Y})$
18. If X and Y are random variables, show that $E(X+Y)=E(X)+E(Y)$, provided the expectations exist.

SECTION - C

Answer any TWO questions
19. a) For ' \mathbf{n} ' events $\mathbf{A}_{\mathbf{1}}, \mathbf{A}_{\mathbf{2}}, \ldots, \mathbf{A}_{\mathbf{n}}$ show that $\mathbf{P}\left(\stackrel{n}{\cap} \mathbf{A}_{\mathbf{i}}\right) \geq \sum_{1}^{n} \mathbf{P}\left(\mathbf{A}_{\mathbf{i}}\right)-(\mathbf{n} \mathbf{- 1})$.
b) A bag contains 50 tickets numbered 1, 2, 3,..., 50 of which five are drawn at random and arranged in ascending order of magnitude $\left(x_{1}<x_{2}<x_{3}<x_{4}<x_{5}\right)$. What is the probability that $\mathrm{x}_{3}=30$?
20. a) Establish addition theorem on probability for any three events.
b) A person applies for the post of manager in two firms A and B. He estimates that the probability of his being selected in firm A is 0.75 ,being rejected in firm B is 0.45 and being rejected in both the firms is 0.55 . Find the probability that he will be selected in atleast one of the firms.
(10 marks)
21. a) If X is a random variable with mean μ and variance σ^{2}, then for any positive number k, show that $P\{|X-\mu| \geq k \sigma\} \leq 1 / k^{2}$.
b) If Y is a random variable such that $E(Y)=3$ and $E\left(Y^{2}\right)=13$, use Chebychev's inequality to determine a lower bound for $\mathrm{P}(-2<\mathrm{X}<8)$.
22. a) Obtain an expression for the variance of a linear combination of random variables.
b) What is the expectation of the number of failures preceding the first success in an infinite series of independent trials with constant probability p of success in each trial?

